1. Michael Huemer writes,
I started thinking about other very important, general epistemological lessons. Lessons that most human beings have not gotten, which has led to lots of other errors. So here’s one; this probably wouldn’t be a good single sentence to leave to the future (since it requires further explanation), but it’s still one of the most important facts of epistemology: Your priors are too high.
Equivalently, he writes
Almost all beliefs require evidence, and they require a lot of it. Way more than you’re thinking.
One consequence of “your priors are too high” is that your mind is too hard to change.
2. Edward R. Dougherty writes,
Four conditions must be satisfied to have a valid scientific theory: (1) There is a mathematical model expressing the theory. (2) Precise relationships, known as “operational definitions,” are specified between terms in the theory and measurements of corresponding physical events. (3) There are validating data: there is a set of future quantitative predictions derived from the theory and measurements of corresponding physical events. (4) There is a statistical analysis that supports acceptance of the theory, that is, supports the concordance of the predictions with the physical measurements—including the mathematical theory justifying the application of the statistical methods.
The theory must be expressed in mathematics because science involves relations between measurable quantities and mathematics concerns such relations. There must also be precise relationships specified between a theory and corresponding observations; otherwise, the theory would not be rigorously connected to physical phenomena. Third, observations must confirm predictions made from the theory. Lastly, owing to randomness, concordance of theory and observation must be characterized statistically.
…Practically speaking, a leader need not know the mathematical particulars of a theory, but he must understand the validation process: what predictions are derived from the theory and to what extent have those predictions agreed with observations?
This is not to argue that leadership be confined to scientists and engineers, only that education include serious scientific, mathematical, and statistical courses. Certainly, one cannot expect good political leadership from someone ignorant of political philosophy, history, or economics, or from someone lacking the political skill to work productively amid differing opinions. The basic point is that good decision-making in a technical civilization requires fundamental knowledge of scientific epistemology.
…To validate a deterministic model, one can align the model and experiment with various initial states and check to see if predictions and observations agree. There might be some experimental variation, but in principle this can be reduced arbitrarily and slight disagreements ignored.
The situation with stochastic models is completely different. For a single initial condition, there are many destination states and these are described via the model by a probability distribution giving the likelihoods of ending up in different states. An experiment consists of many observation trajectories from a single initial state and the construction of a histogram giving the distribution of the experimental outcomes relative to that state. Validation concerns the degree of agreement between the theoretical, model-derived probability distribution and the data-derived histogram. Acceptance or rejection of the theory depends on some statistical test measuring the agreement between the two curves—and here it should be recognized that there is no universally agreed upon test.
…Confronting the problems of complexity, validation, and model uncertainty, I have previously identified four options for moving ahead: (1) dispense with modeling complex systems that cannot be validated; (2) model complex systems and pretend they are validated; (3) model complex systems, admit that the models are not validated, use them pragmatically where possible, and be extremely cautious when interpreting them; (4) strive to develop a new and perhaps weaker scientific epistemology.14
The first option would entail not dealing with key problems facing humanity, and the second, which seems popular, at least implicitly, is a road to mindless and potentially dangerous tinkering. Option three is risky because it requires operating in the context of scientific ignorance; but used conservatively with serious thought, it may allow us to deal with critical problems. Moreover, option three may facilitate productive thinking in the direction of option four, a new epistemology that maintains a rigorous formal relationship between theory and phenomena.
3. https://slatestarcodex.com/2020/05/18/coronalinks-5-18-20-when-all-you-have-is-a-hammer-everything-starts-looking-like-a-dance/